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ABSTRACT

Recent generative models have shown promising results in au-
dio generation across various domains, including human speech,
singing voice, and multi-instrument music synthesis. Such acoustic
models are typically specialized, with separate systems for speech,
singing, and instrumental music. However, real-world audio of-
ten comprises multiple domains—for instance, music recordings
may combine a sung melody or spoken lyrics with instrumental
accompaniment. This highlights the need for more general-purpose
approaches to audio synthesis that can handle cross-domain inte-
gration. As an initial step towards universal synthesis, in this work
we compare different acoustic models originating from distinct
domains—instrumental music synthesis and speech synthesis—on
the task of human voice conversion. Through an extensive evaluation
across singing and speech, we demonstrate that a diffusion-based
instrumental music synthesis model can be effectively adapted to
human voice conversion, achieving performance comparable to or
surpassing that of a dedicated speech synthesis model. We show that
off-the-shelf feature extractors for phonetic content, pitch and acous-
tics provide effective conditioning signals for the synthesizer, en-
abling self-supervised training on large-scale datasets. Project page:
https://benadar293.github.io/voice-conversion

Index Terms— Diffusion, Voice Conversion, Music Synthesis

1. INTRODUCTION

Recent generative models have achieved promising results in visual
content generation and are now widely applied to audio tasks such
as speech [1], singing [2, 3, 4], and instrumental music synthe-
sis [5, 6, 7]. Such models typically generate spectral representations
conditioned on text, phonetic content, pitch, or musical score, which
are later converted to waveforms. While each domain—speech,
singing, and instrumental music—has seen significant progress with
specialized models, real-world audio often combines multiple con-
tent types, including vocals, musical instruments, and hybrid styles

The International Audio Laboratories Erlangen are a joint institution of
the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and Fraun-
hofer Institute for Integrated Circuits IIS. This work was funded by the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) un-
der Grant No. 500643750 (MU 2686/15-1). The authors gratefully ac-
knowledge the scientific support and HPC resources provided by the Er-
langen National High Performance Computing Center (NHR@FAU) of the
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) under the NHR
project b265dc10. NHR funding is provided by federal and Bavarian state
authorities. NHR@FAU hardware is partially funded by the German Re-
search Foundation (DFG)—440719683

like rap or Sprechgesang. Thus, specialized models do not account
for the diverse nature of real-world audio.

Recent work in diffusion-based multi-instrument music synthe-
sis [6, 7] demonstrates the ability to generate complex musical sig-
nals with a wide range of instruments, timbres and acoustics us-
ing a single diffusion model, which is entirely attention-based. Al-
though limited to instrumental music, its broad generative capability
suggests that integration of other audio types including speech and
singing may be possible using similar conditioning techniques.

As an initial step towards integrated and controlled music syn-
thesis combining singing with instrumental music, in this work we
adapt the latter instrumental music synthesis model to human voice
conversion, considering speech and singing in a single acoustic
model. We demonstrate that principles and techniques from instru-
mental music synthesis readily transfer to human voice conversion.

As our main contribution, through an extensive evaluation cov-
ering both naturalness and performer similarity, we show that the
purely attention-based diffusion model used for instrumental mu-
sic synthesis performs comparably or even better than a recent
convolution-based flow-matching voice conversion model, in both
speech and singing voice conversion.

As a second contribution, we demonstrate how off-the-shelf au-
tomatic feature extractors can provide effective conditioning signals,
rather than using manually annotated datasets. We show this ap-
proach to be effective even under domain shift, such as in the case
of a phonetic feature extractor trained on speech data, applied to
singing data. Most importantly, it enables training a synthesizer on
diverse large-scale datasets in an entirely self-supervised manner.

2. RELATED WORK

Voice Conversion (VC) converts a source speech audio sample to
match the speaker identity of a given target speaker [8, 9]. High-
quality conversion is achieved using various generative models, such
as generative adversarial networks (GANs) [8], diffusion models [1],
or more recently flow-matching models [10, 11]. In order to capture
time-varying content from the source recording, previous work ap-
plies existing feature extractors for phonetic content and pitch, which
serve as conditioning signals [12, 13].

Singing Voice Conversion (SVC) adapts a source singing sam-
ple to match a target singer’s identity. The analogy between VC
and SVC allows shared feature representations such as time-aligned
lyrics or transcripts for linguistic content, and pitch contours for
melody or prosody. Building upon this, [4] proposes a unified
speech and singing VC model trained jointly on both domains,
enabling singing synthesis from a speech reference. To address
data scarcity, prior work often resorts to source-separated vocals,
followed by lyrics–audio alignment [2, 3].

https://benadar293.github.io/voice-conversion
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Fig. 1. Overview of our model. “CAT”: Concatenation along the channel axis, “C.A.”: Cross-attention, “S.E.”: Sinusoidal embedding.

Instrumental Music Synthesis generates musical performances
from musical scores. While earlier work focused on single instru-
ments or monophonic music, more recent work enables polyphonic,
multi-instrument synthesis [5], conditioning on the version to cap-
ture acoustic and stylistic aspects [6, 7]. We adapt similar architec-
tures to support speech and singing voice conversion, incorporating
conditioning on phonetic content, pitch, speaker and singer identity.

Audio Foundation Models [14, 15] can generate rich and com-
plex audio including singing with instrumental accompaniment.
Such models are typically prompted by a descriptive text input or
similar meta-level information, providing a form of weak condition-
ing. However, they often lack explicit and fine-grained control over
the different time-varying aspects of the generated audio, such as
melody, phonetic content, and musical score.

3. METHOD

Following previous work in speech, singing, and instrumental music
synthesis, our acoustic model is based on mel spectrogram diffusion.
To convert the generated mel spectrogram into a waveform, we use
an off-the-shelf BigVGAN vocoder [16].1 We choose a general pur-
pose vocoder rather than a vocal-only one —although this may come
at the expense of quality—in order to assess potential for generating
vocal–instrumental mixtures. Figure 1 presents an overview of our
acoustic model. Generation is factorized into three components:

(i) Spectrogram generation is done using a diffusion-based
spectral decoder trained to estimate noise from noisy mel spectro-
grams, serving as the generative backbone.

(ii) Time-varying conditioning is done via an encoder that
learns a fused representation of the given time-varying conditions,
which is provided to the spectral decoder as auxiliary input to guide
generation. We replace the piano roll representation typically used
to represent musical score in instrumental music synthesis [5, 7]
with a phonetic posteriorgram (PPG) representing phonetic content,
and an f0 contour representing vocal pitch.

(iii) Performer conditioning is implemented via feature-wise
linear modulations (FiLM) [17] applied to hidden features at each
block (scale, shift). These are conditioned on an audio embedding
and on an explicit binary descriptor, both representing the vocal per-
former, i.e., the speaker or singer. While this mechanism was used
in instrumental synthesis to condition on timbre and acoustics [6, 7],
we show it is similarly effective for conditioning on the performer.

1https://huggingface.co/nvidia/bigvgan_v2_22khz_
80band_256x

3.1. Feature Extraction

We estimate vocal f0 using CREPE [18], and PPG using a variant
of wav2vec 2.0 [19, 20]. Although the PPG extractor was trained on
speech data, we demonstrate it can provide meaningful condition-
ing for singing as well. Lastly, we obtain audio embeddings from
TRILL [21], which was trained with a triplet loss such that snippets
closer in time are closer in the embedding space.

3.2. Architecture

We experiment with the following models which are based on pub-
licly available implementations: A T5-based diffusion model used
in multi-instrument music synthesis [5, 6, 7] and the state-of-the-art
FlowMAC [11], which is based on MatchaTTS [10], with condi-
tioning done using the voice conversion system PAD-VC [12] based
on Forward Tacotron, as done in [22]. We choose the music syn-
thesis model for its ability to generate complex, multi-instrument
music signals under varied acoustic conditions, suggesting potential
for singing with accompaniment. We choose the speech model as a
baseline for comparison and assessment of the music model’s capa-
bility to handle vocal and phonetic content. While we use off-the-
shelf architectures, many similar architectural alternatives exist—
such as 1D convolution–attention hybrids previously used in singing
and music synthesis [3, 4, 6, 7]. Task-specific architecture optimiza-
tion for speech and singing remains important future work.

In the T5 Transformer-based diffusion model [7], both the de-
coder and the encoder are stacks of self-attention layers. The de-
coder receives the encoded conditioning information via interleaved
cross-attention layers. Performer conditioning is applied to both the
encoder and decoder through FiLM layers [17]. Conditioning on the
noise level is done only in the decoder.

The PAD-VC model consists of 1D convolution blocks and long
short-term memory (LSTM) layers. It is based on the ForwardTa-
cotron decoder without the text alignment encoder which is not nec-
essary in our setting, since our conditioning PPGs and f0 contours
are time-aligned. It is trained with a spectral L1 reconstruction loss.
The resulting coarse spectrogram estimate serves as a conditioning
signal for the subsequent flow-matching model.

The FlowMAC [11] model combines 1D convolutional residual
blocks with attention layers trained as a flow matching model con-
ditioned on the output of PAD-VC. It is based on the decoder part
of MatchaTTS, without the text encoder, since the conditioning PPG
and f0 contour are time-aligned.

All models were trained as described in the original publications.

https://huggingface.co/nvidia/bigvgan_v2_22khz_80band_256x
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Fig. 2. Speech naturalness listening test results.

4. EXPERIMENTS

4.1. Datasets

We use the following datasets (only audio without annotation):
(i) Speech (Dspeech): A ∼33-hour compound dataset compris-

ing proprietary and public sources, featuring recordings in the En-
glish language from two male and three female speakers. As a held-
out set, we randomly sample 50 full-utterance excerpts from each of
the five speakers, each excerpt 2–12 seconds long, totaling ∼19m,
yielding a split Dspeech = Dtrain

speech ∪ Dtest
speech.

(ii) Singing (Dsing): A ∼31-hour compound dataset consist-
ing of the following: The SingStyle111 dataset [23] containing ∼13
hours of solo singing from four male and four female singers, to-
gether with the source-separated vocals from the following Dmix

which includes four female and 33 male singers, using only voice-
active regions totaling ∼18h. Source separation was verified to be
of high quality through informal listening tests, to ensure it does not
affect evaluation. As a held-out set, we randomly sample three songs
for each of the eight singers in SingStyle111, each song 1–7 minutes
long, totaling ∼1.3h, yielding a split: Dsing = Dtrain

sing ∪ Dtest
sing.

(iii) Vocal–Instrumental Mix (Dmix): ∼90h including the
Schubert Winterreise dataset [24] (∼11h, nine male singers with
piano accompaniment), popular music (∼34h, 24 male and four
female singers) and instrumental Western classical music (∼47h).

4.2. Evaluation

We conduct qualitative listening tests focusing on two aspects: (i)
quality and naturalness, and (ii) control over performer identity.
We complement the listening tests by a quantitative evaluation
based on the Fréchet Audio Distance [25]. We compare the fol-
lowing three models trained on the vocal data Dvoc: T5-Voc: A
T5 diffusion-based model; PAD-Voc: The ForwardTacotron-based
model trained with a spectral reconstruction loss; MAC-Voc: The
FlowMAC model conditioned on the output of PAD-Voc.

Lastly, to assess the ability to handle mixed data, we include in
our evaluation T5-All—the T5 diffusion model trained on Dall,
excluding the held-out sets. For this model, we condition on the
instrumental musical score using a piano roll [7], which we sim-
ply concatenate to the vocal conditioning features (f0 and PPG). We
further condition it by concatenating a one-hot encoding of the data
type (vocal only or with instrumentals) to the performer condition.
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Fig. 3. Singing naturalness listening test results.

Naturalness Rating↑
Speech Singing

T5-Voc 68.63±18.11 59.11±17.54
T5-All 53.15±17.66 49.94±19.27
PAD-Voc 20.12±15.55 15.90±10.57
MAC-Voc 68.34±17.98 55.84±17.53
Ref. 99.28±4.49 99.89±1.64

Table 1. Speech and singing naturalness listening tests results.

4.2.1. Naturalness Listening Tests

To evaluate the quality of the synthesized audio in terms of natu-
ralness and realism, we follow a listening test protocol with a hid-
den reference and a lower anchor similar to a standard Multiple
Stimuli with Hidden Reference and Anchor (MUSHRA) test [26],
which usually produces statistically significant results with a rela-
tively small number of participants. We perform two listening tests,
one for speech and one for singing, comparing the four aforemen-
tioned models, in the task of reconstructing the original audio from
the conditioning features, namely f0, PPG, and performer identity.
In this setting, the target identity is the same as in the source audio
excerpt from which the f0 and PPG were extracted.

As a reference we use the vocoded version of the original audio
(i.e., the audio generated by the vocoder from the mel spectrogram of
the original audio), which is the upper bound on the attainable qual-
ity. Listeners who rated the hidden reference lower than 95 more
than once were discarded (post-screening). In the speech listening
test, 26 listeners participated, one of which was post-screened, leav-
ing 25 listeners. In the singing listening test, 29 listeners partici-
pated, four of which were post-screened, leaving 25 listeners.

Results for speech and singing appear in box plot and violin plot
form in Figures 2 and 3, with pairwise p-values using a Wilcoxon
signed-rank test. Mean and standard deviation values appear in Ta-
ble 1. It can be seen that T5-Voc performs comparably or slightly
better than MAC-Voc. T5-Voc was rated slightly higher than
MAC-Voc in singing—with a mean rating of 59.11 compared to
55.84, and a p-value of 7.24e−3. In speech, the difference (68.63
compared to 68.34) is not significant (p = 0.69). We observe gen-
erally lower ratings for singing, which may indicate that expressive
singing is harder to generate than speech.

A key takeaway from this experiment is that T5-Voc bor-
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Fig. 4. Singer similarity listening test results.

rowed from instrumental synthesis can be applied to vocal synthesis,
suggesting its potential for singing with instrumental accompani-
ment. However, adding instrumental data into training (T5-All)
degrades perceived quality for both speech and singing by a consid-
erable amount of 10–15 points. This can be expected— adding data
from a distinct domain can increase complexity. and require higher
capacity. Mitigating this effect remains important future work.

4.2.2. Singer Similarity Listening Test

In this test we investigate how closely the generated audio resembles
recordings of a target singer, comparing the T5-Voc and MAC-Voc
from the previous subsection in singing voice conversion.

For each question we randomly sample a reference singer ref,
and another singer other of the same gender. A random source ex-
cerpt provides the f0 and the PPG. Using each of the T5-Voc and
MAC-Voc models, we sonify the source f0 and PPG conditioned
on ref and other, yielding four generated samples. Listeners
are then presented with three random excerpts of ref to familiarize
themselves with the target voice, and are asked to rate the similarity
of each generated sample to ref, according to the following Likert
scale: (1) “completely different person,” (2) “probably different per-
son,” (3) “similar,” (4) “probably the same person,” and (5) “exactly
the same person.”

The test comprised ten randomly sampled questions, each with
four generated and three reference samples. Excerpts were 3–12 sec-
onds long, of full utterances drawn from a test set balanced between
male and female singers. In total, twenty listeners participated.

Results appear in Figure 4, including p-values, and rating his-
tograms for each Likert value and model (light-colored bars). For
both T5-Voc and MAC-Voc, conditioning on the target singer sub-
stantially increases perceived similarity. For instance, T5-Voc rat-
ings rise on average from 1.76± 1.06 when conditioned on another
singer (T5-Voc-oth) to 3.25± 1.09 when conditioned on the ref-
erence singer (T5-Voc), with the most frequent rating being (4)
“probably the same person”.

We observe that T5-Voc achieves higher similarity ratings than
MAC-Voc with a mean rating of 3.25 versus 2.75 and a p-value
below 10−7, indicating stronger conditioning. We hypothesize this
stems from the conditioning in T5-Voc being applied both in the
encoder and decoder, whereas conditioning of MAC-Voc is done
only in its ForwardTacotron-based encoder. Conditioning its decoder
could potentially improve performer similarity.

FAD↓
Speech Singing

Dtest
speech Dtrain

speech Perf. Dtest
sing Dtrain

sing Perf.

T5-Voc 0.162 0.118 0.156 0.108 0.093 0.141
T5-All 0.187 0.141 0.190 0.142 0.128 0.192
PAD-Voc 0.345 0.288 0.343 0.271 0.257 0.356
MAC-Voc 0.171 0.113 0.163 0.110 0.092 0.178
Vocoder 0.002 0.054 0.573 0.004 0.065 0.369

Table 2. FAD results for speech and singing.

A key takeaway from this experiment is that the same condition-
ing technique used for acoustics in instrumental music synthesis [7]
is similarly effective for conditioning on the singer in human VC.

4.2.3. Fréchet Audio Distance (FAD)

We complement the listening tests with a quantitative evaluation us-
ing the Fréchet Audio Distance (FAD) [25] which measures a dis-
tributional distance between two sets. Following [5, 6, 7], we use
the TRILL model [21] which produces five audio embeddings per
second. We apply two variants: (i) All-FAD corresponds to over-
all quality, measuring the distance between all generated audio, and
the entire reference set of real recordings; (ii) Performer-FAD cor-
responds to performer similarity, measuring the distance between
audio generated with a specific performer condition, and the set of
real recordings of the same performer. To evaluate conversion qual-
ity, we render the held-out sets with randomly sampled other target
performers—speakers for speech and singers for singing.

Table 2 reports the results. For All-FAD, we compare generated
audio to the train and test sets (cols. 2–3, 5–6). For Performer-FAD,
we compare synthesized and real subsets corresponding to perform-
ers (cols. 4, 7). T5-Voc produces best overall scores, usually sur-
passing MAC-Voc. The difference is most prominent for Performer-
FAD—for example, in singing, T5-Voc yields 0.141 compared to
0.178 of MAC-Voc, consistent with the similarity listening test.

We hypothesize the generally lower distances w.r.t. the train sets
are due to the train set being larger, thus of smoother distribution.

While the vocoded source yields best All-FAD scores, it yields
worst Performer-FAD scores, since the source and target performers
differ, confirming that performer conditioning shifts the generated
audio distribution towards the target performer.

It is also clear that adding instrumental data (T5-All) worsens
scores, consistent with the listening tests (Section 4.2.1).

5. CONCLUSION

In this work we evaluated the performance of an attention-based dif-
fusion model adapted from instrumental music synthesis to human
voice conversion. Through an extensive evaluation across speech
and singing we have shown it can match—or even surpass—a dedi-
cated voice conversion model in terms of quality and performer sim-
ilarity. While our results also indicate a decline in vocal synthesis
quality when including training data with instrumental music, the
model’s demonstrated ability to handle both instrumental and vocal
synthesis within a unified framework underscores its potential for
generating complex signals, such as singing with instrumental ac-
companiment. Exploring and evaluating generation of such signals
remains an important direction for future work.
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