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Abstract—Music synthesis aims to generate audio from sym-
bolic music representations, traditionally using techniques like
concatenative synthesis and physical modeling. These methods
offer good control but often lack expressiveness and realism in
timbre. Recent advancements in diffusion-based models have en-
hanced the realism of synthesized audio, yet these models struggle
with precise control over aspects like acoustics and timbre and
are limited by the availability of high-quality annotated training
data. In this paper, we introduce an advanced diffusion-based
framework for music synthesis that further improves realism and
introduces control through multi-aspect conditioning. This allows
the synthesis from symbolic representations to accurately repli-
cate specific performance and acoustic conditions. To address the
need for precise multi-instrument target annotations, we propose
using MIDI-aligned scores and automatic multi-instrument tran-
scription based on neural networks. These methods effectively
train our diffusion model with authentic audio, enhancing realism
and capturing subtle nuances in performance and acoustics. As
a second major contribution, we adopt conditioning techniques
to gain control over multiple aspects, including score-related
aspects like notes and instrumentation, as well as version-
related aspects like performance and acoustics. This multi-aspect
conditioning restores control over the music generation process,
leading to greater fidelity in achieving the desired acoustic
and stylistic outcomes. Finally, we validate our model’s efficacy
through systematic experiments, including qualitative listening
tests and quantitative evaluation using Fréchet Audio Distance
to assess version similarity, confirming the model’s ability to
generate realistic and expressive music, with acoustic control.
Supporting evaluations and comparisons are detailed on our
website (benadar293.github.io/multi-aspect-conditioning).

Index Terms—Multi-Instrument Synthesis, Diffusion.

I. INTRODUCTION

Music synthesis, the process of generating audio from
symbolic music representations, is an important and long-
studied area of research with applications in music creation
and production. Traditional signal processing approaches, em-
ploying techniques such as concatenative synthesis [1, 2, 3, 4]
and physical modeling [5, 6], have been used to produce high-
quality audio for specific instruments. These methods provide
explicit control over the audio output, thanks to note-wise
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and the Fraunhofer Institute for Integrated Circuits IIS.

In
st

ru
m

en
ts

Diffusion-based Synthesizer Model
N

ot
es

Ac
ou

st
ic

s

Pe
rf

or
m

an
ce

Score 
Condition

Version 
Condition

Fig. 1. Schematic overview of the proposed approach for diffusion-based
music synthesis using multi-aspect conditioning. Our model generates audio
conditioned both on the score, and on the version. The score contains the
notes, instruments and timing, providing the musical content. The version
corresponds to the specific acoustic and performance aspects, including tim-
bre, rocording environment, and style. Version conditioning provides control
and flexibility, enabling to generate different timbres of the same instrument
(e.g., different types of guitar), or different room acoustics.

rendering and the manipulation of pre-recorded samples. Even
though these methods offer a variety of timbres, they still
restrict flexibility and often lack expressiveness and realism,
especially in terms of timbre and acoustic conditions. For
example, replicating the unique sound of a specific orchestra
or instrument poses significant challenges, such as producing
audio that resembles the Berlin Philharmonic Orchestra or
emulating the guitar sound from a 1975 recording by Segovia.

Recent advancements in data-driven generative modeling
have addressed some of these limitations by enabling the infer-
ence of semantic aspects from example data [7, 8, 9, 10, 11]. In
particular, Denoising Diffusion Probabilistic Models (DDPMs)
have been extremely successful in rendering realistic images
and learning styles from example images [11, 12, 13, 14].
Similarly, such models have been used to learn sounds from
examples, significantly improving the expressiveness and re-
alism of synthesized audio, including speech [15, 16] and
music [17, 18].

However, these data-driven models require large datasets
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Fig. 2. Overview of our proposed diffusion-based synthesis model. Our model learns to denoise mel-spectrograms conditioned on score-based and version-
based information. Version conditioning (determining the acoustics, specific timbre, recording environment and style) is done through FiLM layers at each
block, which can be applied to either a T5 transformer or a U-Net. The version condition is represented by the performance ID, and is inserted at each layer
by concatenation with the diffusion timestep. The score condition is provided as additional input, in the form of a MIDI-like piano-roll representation. For
sampling consistent segments with smooth transitions, we use an overlapped generation technique borrowed from Computer Vision [19, 20].

with detailed annotations of notes and instruments, confining
them to specific curated datasets or necessitating the use of
lower-quality synthesized data. For example, the DDPM-based
approach described by Hawthorne et al. [17] uses data based
on concatenative synthesis, compromising audio quality and
resulting in flat, less realistic audio.

Another problem is that these approaches often face chal-
lenges in precisely controlling aspects such as acoustics and
timbre. In particular, these data-driven generative methods may
encounter problems such as instrument drift, where the same
instrument is not rendered coherently in different parts of the
generated audio.

In this paper, building upon our previous work [21], we
introduce an advanced diffusion-based framework for mu-
sic synthesis that incorporates multi-aspect conditioning on
notes, instruments, performance styles, and acoustic details
to significantly enhance realism and control. Consequently,
our method facilitates the synthesis of music signals from
symbolic representations, accurately replicating specific per-
formance and acoustic conditions as provided in example
recordings. For instance, our model is capable of reproducing
the guitar sound from a 1975 recording of Segovia playing
Albéniz’s “Capriccio Catalán”, now applied to another piece,
such as Jobim’s “Felicidad.” Furthermore, even in more com-
plex musical settings, our model can transfer certain timbre
and acoustic conditions from orchestral recordings, such as
Karajan’s 1962 recordings of Beethoven’s symphonies with
the Berlin Philharmonic, to new musical works presented in
symbolic format. To the best of our knowledge, our work is the
first to address such challenges in a multi-instrument setting.

The main contributions of this paper, which substantially
extends our initial study [21], can be summarized as follows.
First, to meet the demand for precisely annotated multi-
instrument symbolic data, we propose two approaches: one
using MIDI-aligned symbolic scores as in [21], and the other
employing recent multi-instrument transcription methods [22].
We demonstrate that in both cases, the quality of the target data

is sufficient to leverage uncurated multi-instrument real-world
audio for training our diffusion model. This use of authentic
training data enables our model to capture genuine musical
performance characteristics, including subtle nuances in timbre
and acoustics.

As a second main contribution, we expand the capabilities of
diffusion models by integrating control over multiple musical
aspects, including score-related aspects such as notes and
instrumentation, as well as version-related aspects such as
acoustics and performance. Specifically, we demonstrate how
version control can be achieved using conditioning techniques
based on Feature-wise Linear Modulation (FiLM) layers [23].
Our multi-aspect conditioning approach allows us to train
a single model on massive amounts of uncurated multi-
instrument performances with diverse instrumentation, includ-
ing symphonic orchestras, chamber orchestras, church organs,
harpsichords, violins, guitars, and more. Furthermore, we show
how version conditioning restores control over the music
generation process, leading to greater fidelity in achieving the
desired acoustic and stylistic outcomes. For an overview of
our DDPM-based model, see Figure 2.

As a third contribution, we validate the efficacy of our model
through rigorous evaluation methods. These include listening
tests and the application of the Fréchet Audio Distance [24]
to assess both realism and version similarity, which confirms
the model’s ability to generate realistic and expressive audio.
These evaluations are complemented by a wide range of syn-
thesized music examples and comparisons with prior methods,
all accessible on our freely available website.1

The remainder of this paper is organized as follows. Sec-
tion II discusses related work, focusing primarily on music
synthesis. Section III introduces the computational pipelines
of our diffusion-based approach to music synthesis. In Sec-
tion IV, we present our main technical contribution, the multi-
aspect conditioning framework, which includes our extensions

1benadar293.github.io/multi-aspect-conditioning
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TABLE I
OVERVIEW OF PREVIOUS WORK INDICATING ABILITY TO RENDER
MULTIPLE INSTRUMENTS SIMULTANEOUSLY (MULTI), VERSION
CONTROL (VERSION), GENERATING ORCHESTRAL SYMPHONIES

(SYMPH.), DATA SIZE, AND RATIO OF REAL VS. SYNTHETIC DATA USED
FOR TRAINING (REAL%).

Multi Version Symph. Data Real%
[25] ✗ ✓ ✗ ∼140H 100%
[26] ✗ ✗ ✗ ∼1H 100%
[27] ✗ ✗ ✗ ∼1H 0%
[28] ✗ ✗ ✗ ∼1H 100%
[29] ✗ ✗ ✗ ∼3H 100%
[17] ✓ ✗ ✗ ∼1500H ∼ 2%
[30] ✗ ✗ ✗ ∼93H ∼ 3%
Ours ✓ ✓ ✓ ∼58H 100%

of score conditioning using alignment and transcription tech-
niques, with our proposed version conditioning. In Section V
we present our proposed technique for consistent and smooth
segment-wise generation. Section VI details the evaluation
criteria and presents experiments, including qualitative lis-
tening tests and quantitative evaluations. Finally, Section VII
concludes the paper and discusses future work, highlighting
the potential of version conditioning for automated instrumen-
tation achievable with pitch-only input.

II. RELATED WORK

Audio synthesis in current literature can be done auto-
regressively, where models directly construct a waveform
sample-by-sample [25, 31, 32]. Another approach, which we
take, operates in the spectral domain. This requires a sub-
sequent step to convert the generated spectral representation
(whether the short-time Fourier transform or mel-spectrogram)
into a waveform, but it is computationally more efficient.

For a data-driven approach, large amounts of labeled data
are required, i.e., paired datasets of audio recordings and their
corresponding time-aligned transcriptions. While such datasets
exist for instruments such as the piano thanks to special
equipment (e.g., Disklavier), this is not the case for other
instruments. Thus, previous works mainly focus on generating
piano performances, monophonic (single-voice) music (which
is easier to label), or music produced by a concatenative
synthesizer [17, 27], which is trivially supervised.

Table I provides a summary of existing methods for score-
to-music synthesis. Wang and Yang [26] use a U-Net to
synthesize solo violin, cello, and flute performances, requiring
a separate model for each instrument. It is trained with a
spectral reconstruction loss, without diffusion. Similarly, Dong
et al. [28] use a Transformer architecture to synthesize solo
violin or piano. Both works produce only monophonic and
single-instrument music (i.e., only a single note or single
instrument is synthesized at any given time).

Wu et al. [29] learn a parametric model of a musical
performance, synthesizing from performance controls such as
intensity, vibrato, etc. Although promising, a central draw-
back is that this work only operates on monophonic single-
instrument data, similar to former works—due to the higher
complexity of polyphonic music, and lack of high-quality
polyphonic training data.

In multi-instrument synthesis, Hawthorne et al. [17] use a
T5 Transformer-based diffusion model. While this method is
promising and produces high-fidelity audio, it has limitations:
It does not have control over the version, acoustics, and style
(e.g., specific type of organ when several exist, or recording
environment), and produces less realistic sound, due to lack
of real annotated data, as demonstrated on our project page.

Kim et al. [30] use a diffusion-based approach follow-
ing Hawthorne et al. [17], with a down-scaled T5 model, for
guitar synthesis. The work is limited to guitar alone, and is
trained mainly on synthetic data due to the aforementioned
lack of real annotated data.

Other works exist for generating audio conditioned on text
prompts [33, 34], however, in this work we focus on score-
conditioned music synthesis.

III. DIFFUSION-BASED MUSIC SYNTHESIS

An overview of our method is depicted in Figure 2. We
seek to enhance the generation quality and control of an off-
the-shelf diffusion-based music generator using a collection of
real multi-instrument performances with corresponding scores
and version information. Hence, we start from a dataset
D = {(ai, si, vi)}Ni=1, comprising audio performances ai,
their symbolic score annotation si, and information regarding
the version vi in the form of an identifier for the recording
or performance. We represent a version condition vi as an
integer number, where recordings performed by the same
ensemble in the same recording environment are assigned the
same number (Section IV-C). With this dataset, we train a
music synthesizer using different state-of-the-art architectures,
namely T5 Transformer [17] or U-Net [11], infused with
version conditioning.

Similar to previous works [17], we operate in the spectral
domain, using a mel-spectogram representation. We postu-
late our method can be adapted to larger spectral repre-
sentations (e.g., STFT), or the waveform domain, though
at significantly higher computational costs. To convert mel-
spectrograms into audio, we rely on the state-of-the-art
Soundstream vocoder [35], which is the same vocoder used
by Hawthorne et al. [17]. It was trained with a combination
of spectral reconstruction and adversarial losses.

Finally, to generate long audio streams in a segment-wise
fashion, while ensuring seamless transitions between generated
segments, we adapt an overlapping technique, borrowed from
visual generation (Section V). This technique is complemented
by version conditioning, which also implicitly enforces con-
sistency across different generated segments, thus preventing
timbre drift.

A. Denoising Diffusion Probabilistic Models

We train our neural synthesizer as a Denoising Diffusion
Probablistic Model (DDPM) [11]. DDPMs are trained to
estimate the inverse of a Gaussian diffusion noising process,
parameterized by a noise level schedule βt, t = 0, . . . T ,
typically increasing from 0 to 1. By substituting noise level βt
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Fig. 3. Architecture of the T5 Transformer. The difference from Hawthorne
et al. [17] is incorporation of version conditioning using FiLM layers. In
the spectrogram decoder the version representation is concatenated to the
diffusion timestep representation, and both are inserted into FiLM layers. In
the score encoder, the version representation is inserted through FiLM layers.
Note that the score encoding is independent of the diffusion timestep, similar
to Hawthorne et al. [17].

with signal level, αt = 1− βt, the process can be represented
as a Markovian chain, in the following recursive form:

xt =
√
αtxt−1 +

√
1− αtϵ (1)

where t ≥ 1, x0 is a datapoint, i.e. a clean spectrogram, and
ϵ ∼ N (0, I). By further substituting ᾱt =

∏
i≤t αi, one can

equivalently represent the process by the non-recursive form:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ. (2)

A DDPM ϵθ(xt, t) estimates the reverse process by predicting
the normal noise ϵ, given the noisy spectrogram xt and the
diffusion timestep t. In our case of multi-aspect-conditioned
music synthesis, it can be trained by minimizing the empirical
loss:

E(x0,s,v)∼D, ϵ∼N (0,I), t∼U({1,... T})∥ϵθ(xt, t, s, v)− ϵ∥1 (3)

where s, v are the score and version conditions, respectively.
In visual models the L2-norm is common, however we fol-
low Hawthorne et al. [17] and use the L1-norm.

Note that ᾱ0 = 1, ᾱT = 0, and xT ∼ N (0, I). Therefore,
the model learns to sample from the latent data distribution p
by mapping isotropic noise to data points:

p(x0|xT , s, v), xT ∼ N (0, I), (4)

thus modelling the variation in the data. In our approach to
multi-aspect-conditioned music synthesis, we use DDPMs to
capture the variations in musical performances and to account
for subtle nuances, since the same musical score can have
infinitely many interpretations, even when played by the same
musicians under identical acoustic conditions.

B. Architecture

We experiment with two architectures: A T5 Transformer
used for score-conditioned spectrogram synthesis [17], and
a U-Net originally used for images [11]. We enhance both

models with version conditioning. The T5 architecture, which
is our main focus, is depicted in Figure 3.

The T5, borrowed from Hawthorne et al. [17], comprises a
transformer decoder, which is the generative backbone that de-
noises the spectrogram, and a transformer encoder, providing
a representation of the score condition as auxiliary input to the
decoder, for note and instrument control. The decoder receives
the encoded score through cross-attention layers. A central mo-
tivation for separating denoising from score conditioning in the
architecture is modularity—it theoretically enables separate
training of each component, even on different datasets, which
is common in text-to-image models [12, 13, 14]. Hawthorne
et al. [17] train this model on a synthetic dataset, without
version conditioning. We incorporate version conditioning into
this model, and train it from scratch on real performances
alone. Both the original T5 model of Hawthorne et al. [17]
trained on synthetic data, and the T5 trained on our dataset,
without version conditioning, serve as baselines for compar-
ison, to evaluate both the effect of version conditioning, and
the effect of using real training data (Section VI).

Although most of the evaluation in this work (including the
listening tests) is done with the T5, we also experimented with
a U-Net. We use the exact same architecture as Ho et al. [11],
but adapt it to spectrogram synthesis by modifying all oper-
ations (convolution, attention, and group normalization) to be
1D rather than 2D, regarding the frequencies as channels. This
allows for interactions between distant frequencies, inherent in
spectrograms (partial frequencies), and is common practice in
spectrogram synthesis (e.g., Wang and Yang [26] use a 1D U-
Net without diffusion). Results for the U-Net can be found in
the Appendix on our project page. As can be seen there, and
from a qualitative observation, the T5 achieves slightly better
results, but the U-Net requires significantly less training time.

IV. MULTI-ASPECT CONDITIONING

Our model is conditioned on multiple aspects: The noise
level (as is common in diffusion models), the musical score
information, and the version. In the following sections we
explain how each condition is incorporated.

A. FiLM Layers and Diffusion Time Step Condition

A central mechanism we use for conditioning is Feature-
wise Linear Modulation (FiLM) layers [23], which are es-
pecially suitable for multi-task cases, where a model learns
many similar tasks simultaneously. For example, a diffusion
model typically learns to denoise with many different noise
levels—each noise level can be regarded as a slightly different
task. FiLMs enable the different tasks to share most parameters
while maintaining flexibility. The features at each level of the
network are slightly modified with an affine transformation,
according to the condition. Such transformations are also
referred to as modulations (not to be confused with a musical
modulation of key). The modulations are applied on the
network features according to the formula:

FiLM(xi,j |γi,j , βi,j) = γi,jxi,j + βi,j ,

where xi,j is the j-th feature of the i-th layer of the network.
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synthesize new scores with the target version. In the latter example, the model
can generate a performance of Brahms’ 4th Symphony, with the acoustics and
style of the 1952 Toscanini recording of Beethoven’s 5th symphony.

FiLMs are typically used in diffusion models to handle
different noise levels, i.e., diffusion timesteps [17]. In our
case of synthesis using version conditioning, we further extend
the modulations at each layer to control the desired acoustics
depending on the version v (Section IV-C).

We apply FiLMs by predicting an affine transformation
for each block of the network using multi-layer perceptrons
(MLPs). More explicitly, given a condition c (representing
a diffusion timestep t, or an ID number v corresponding to
the version, or a combination of both), we learn an MLP
embedding C = Mθ(c) ∈ Re. For the i-th block of the
network with input features xi ∈ Rni , we learn linear layers
Lγ
i , L

β
i : Re → Rni and modulate the input features to obtain

new features x′
i:

x′
i = (1 + γi)

⊤xi + βi (5)

where γi = Lγ
i (C) and βi = Lβ

i (C). See Section IV-C for
details on combining the version condition with the diffusion
timestep condition.

B. Score-Based Condition

A necessary requirement for any synthesizer is control
over notes and instrumentation in generated performances.
When following a data-driven approach, such control requires
training data consisting of musical performances paired with
their corresponding reference transcriptions. Any score-related
aspect we seek to control should be faithfully represented in
the corresponding reference transcription. Therefore, control
over notes, exact timing, and instrumentation requires training
data to have accurate transcriptions of all these aspects.

Music transcription in general, and especially of multi-
instrument performances, is known to be a hard problem due
to temporal-spectral overlaps and the lack of training data.
Thus, previous DDPM-based works resort to artificial data
generated by concatenative synthesis, for which transcriptions
are trivially available [17, 30]. Unfortunately, this comes at
the expense of realism, as the model learns to imitate the

sound of a concatenative synthesizer, rather than real musical
performances, and thus does not leverage the full generative
power of DDPMs.

Recent work by Maman and Bermano [22] shows poten-
tial in transcribing general multi-instrument recordings. They
propose a unified framework for automatic music transcrip-
tion, and audio-score alignment based on neural features of
transcription models. We show that this approach provides
effective score conditioning, enabling to train a diffusion-based
synthesizer on large amounts of uncurated real performances
of diverse instrumentation, while maintaining control over
notes and instrumentation.

1) Alignment vs. Transcription: The score conditions for
the synthesizer should be exact score representations of the
corresponding audio. These can be obtained in two ways:

• Alignment of an existing digital score representation with
the audio

• Transcription predicted by an automatic transcriber
Both approaches have benefits and limitations in terms of
robustness and accuracy: Alignment is generally easier than
transcription and is constrained to a well-defined set of
note events, including instrument information, eliminating
confusion between pitches and instruments. Previous work
shows that a weak transcriber can still produce an accurate
alignment [22, 36]. On the other hand, automatic prediction
can be more robust in case of alignment errors, which often
occur [22, 36].

From a practical perspective, transcription is more favorable
than alignment, as for most musical genres and performances
(e.g. jazz or rock music) accurate scores are not easily avail-
able, or do not exist. A “universal” automatic transcriber (for
which recent work [22] shows promising results) provides
transcriptions for a wider range of musical performances,
facilitating the use of massive training data for the synthesizer,
similar to large text-to-image models [12, 13, 14].

In this work, we experiment with both approaches and
show that they produce comparable results. Due to the major
practical benefits of the transcription approach, we perform
qualitative listening tests (Sections VI-C1-VI-C2) on a synthe-
sizer trained with transcriptions as conditions. In addition, we
quantitatively evaluate and compare both score conditioning
approaches, and show comparable performance (see Appendix
and samples on project page).

2) Score Errors: We note that both approaches may lead to
errors, or deviations between the musical performance and the
assigned reference notes. However, a small amount of errors
will not necessarily negatively impact the model, as the model
is trained to generate performances from the distribution of
real performances, that do not contain errors, from possibly
noisy scores, thus learning to correct errors. Still, investigating
the effect of transcription or alignment accuracy on the model’s
performance is an important direction for future work.

C. Version-Based Condition

In musical performances, many aspects other than the
musical score itself bear significant influence on the outcome,
including both acoustic- and performance-related aspects.
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Acoustic-related aspects include specific instrument timbre,
e.g., the specific kind of guitar used, the singer identity, the
church organ register, or more general acoustics such as the
room acoustics, the orchestra size, position of the audience or
recording device relative to the orchestra, and many more.
Performance- or style-related aspects include, for example,
dynamics and expression—the same musical segment can be
played in infinitely many styles with varying intensity or
fluctuation, e.g., using vibrato, tremolo, or staccato, legato,
etc. All of these aspects are reflected in the specific version
of the musical piece.

A successful synthesizer should take into account the latter
aspects associated with the specific version, in addition to the
score. Therefore, we condition our generated performances
on the target version, in order to obtain its special charac-
teristics. This version conditioning enables acoustic and style
control, and reduces the ill-posedness of score-conditioned
music synthesis. The different aforementioned version-related
factors such as timbre, acoustics, and style are thus represented
implicitly by the version condition. Using this mechanism,
we can generate different types of the same instrument (e.g.,
guitars of different timbres), or different orchestral sounds. We
demonstrate this on our project page, by synthesizing the same
scores with different orchestras, harpsichords, church organs,
and guitars.

We represent a version condition as an integer number vi,
where recordings performed by the same ensemble in the same
recording environment are assigned the same number. Each
condition can represent a single recording of a few minutes in
the train set (e.g., Segovia playing Albéniz’s Capriccio Catalán
on the guitar), or a set of recordings of several hours (e.g., of
Beethoven’s concertos for piano and orchestra performed by
Mitsuko Uchida and The Royal Concertgebouw Orchestra).

1) Version Conditioning with FiLM Layers: We incorporate
the version condition using FiLM layers, similar to diffusion
timesteps. As mentioned in Section IV-A, FiLM layers are suit-
able for multi-task cases. In the case of a synthesizer trained
on many unrelated performances of diverse instrumentation,
each performance with its corresponding acoustics and style
should be regarded as a slightly different task.

As mentioned in Section III-B, the T5 architecture we
use [17] consists of a spectrogram decoder, denoising the
spectrogram, and a score encoder, providing a representation
of the notes as auxiliary input to the decoder through cross-
attention layers. Note that Hawthorne et al. [17] condition only
on the diffusion timestep and not on the version. They use
FiLMs in the decoder to incorporate the diffusion timestep
into denoising, but not to the score encoder; i.e., the score
representation is independent of the noise level.

We incorporate the version condition into the decoder and
encoder using FiLMs in the following manner: We learn two
MLP representations for the version v, and diffusion timestep
t, which we denote by Mθ(v), Nθ(t) ∈ Re. For the decoder
FiLMs, we concatenate them, and use the combined condition:

C = C(v, t) = concat(Mθ(v), Nθ(t)) ∈ R2e (6)

in Equation 5 (see also Figure 3). For the score encoder FiLMs
we use the version condition alone, without the diffusion

timestep, as explained above, leading to the condition:

C = C(v) = Mθ(v) ∈ Re. (7)

For the U-Net, we use FiLMs to condition each block on
the combination of the diffusion timestep and the version, as
in Equation 6.

V. TEMPORAL COHERENCY & SMOOTH TRANSITIONS

We generate long performances of several minutes by seg-
ments of ∼5 seconds each, dictated by memory constraints.
This raises an issue of coherency and consistency between
segments. A naı̈ve approach of block-wise synthesis will allow
abrupt changes in volume, timbre, expression, ambience, etc.
in transition points, due to different trajectories in the diffusion
reverse process. Moreover, even with smooth transitions, tim-
bre drift can occur, i.e., changes in timbre between segments.
We propose a simple and effective overlapped generation
technique for smooth transition between segments, adapted
from computer vision.

A. Smooth Transitions

For smooth transition between segments, we generate seg-
ments with short overlaps, smoothly interpolating between
consecutive segments in each step of the sampling process.
We use an interpolation coefficient linearly decreasing from 1
to 0 along the overlap, in the predicted sample x̂0 of each
step, derived from the predicted noise ϵ̂ from the formula
x̂0 = xt−

√
1−ᾱtϵ̂√
ᾱt

. Borrowed from motion generation [19, 20],
this is an effective and convenient approach, performed solely
at the sampling stage, and requiring no additional training
components, contrary to Hawthorne et al. [17].

B. Acoustic Consistency

Smooth transitions enabled by the proposed interpolation
do not guarantee consistent timbre, as timbre could still drift
smoothly between segments, as is demonstrated on our project
page. As can be observed in the samples, version conditioning
is an effective way to address this issue, as it implicitly creates
acoustic consistency and stability between segments.

VI. EVALUATION

In this section, we discuss the evaluation of our proposed
DDPM-based synthesizer. In Section VI-A we define the
desired properties of a high-quality synthesizer and explain the
general criteria and methods for evaluation. In Section VI-B
we present the datasets used for evaluation. In Section VI-C
we present the qualitative listening tests we have performed for
evaluating the model. In sections VI-D and VI-E we present
quantitative results using established score metrics based on
the Fréchet Audio Distance (FAD) [24], and transcription
metrics.

A. Evaluation Criteria

A high-quality synthesizer should possess both high gen-
erative power on the one hand, and elaborate control on the
other hand, while producing high-quality realistic sound. This
can be broken down into the following required properties:
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a) Realism & Quality: The synthesizer should gener-
ate realistic and high-quality sound. Ideally, the generated
performances should be indistinguishable from real musical
performances, i.e., pass the Turing Test [37].

b) Score Control: This involves the played notes or
pitches, instruments, and timing, including note onset and
offset. Notice that note onset and offset timing are also related
to performance control, as discussed below.

c) Acoustic Control: This involves the specific instru-
ment timbre (e.g., which type of violin), room acoustics,
location of listener or microphone relative to the orchestra,
orchestra size, and so on.

d) Performance Control: This encompasses aspects such
as note intensity or strength (also referred to in the literature
as the velocity in which the instrument was struck), degree of
vibrato or tremolo, and more. Also, expressive interpretation of
note timing can be regarded as a part of performance aspects.

e) Generating Unspecified Aspects: While control over
the aforementioned aspects (score, acoustics, performance)
is highly desirable, it is also required that the model
can realistically generate aspects or confounding factors
unspecified by the user, facilitating the generation process.
This is required since many aspects of control, especially
performance controls, such as vibrato and velocity, can be
extremely laborious to define, and require highly skilled
musicians.

In this work we focus on realism and quality, score control,
and acoustic control. We rely on the model to implicitly
generate performance aspects such as vibrato and intensity.
Examples can be found on our project page demonstrating
the ability of the model to generate such aspects, e.g., a
violin playing with vibrato. We argue that explicit performance
control in a data-driven approach requires the transcriptions to
contain this information, and leave this for future work.

To evaluate realism and quality, in Section VI-C1 we
conduct a MUSHRA listening test [38] comparing perfor-
mances of the same musical excerpts generated on various
synthesizers, both concatenative and diffusion-based, with and
without version conditioning, as well as real versions, both
original and vocoded.

Furthermore, to evaluate acoustic control, in Section VI-C2
we conduct an additional listening test to measure the effect
of version conditioning in achieving the target acoustics, to
which we refer to as version similarity.

In Section VI-D we complement the qualitative listening
tests with quantitative perceptual metrics based on the Fréchet
Audio Distance (FAD). We introduce two ways of measuring
the FAD: All-FAD to measure realism and quality, and Group-
FAD to measure version similarity. Finally, in Section VI-E,
to evaluate score control, we apply quantitative transcription
metrics to evaluate the faithfulness of our generated perfor-
mances to the target notes and instruments.

B. Datasets

a) Train Set: We train our model on 197 performances
of Western classical music, including symphonies, chamber

music, and solo pieces, comprising 19 instruments, and total-
ing 58:06:07 hours. The data consists of performances from
YouTube [39] and Musopen [40], with corresponding MIDI
transcriptions from KunstDerFugue [41], aligned as proposed
by Maman and Bermano [22]. Following the same work, we
augment the data by pitch-shifting up to ±2 semitones (larger
ranges of shifts did not improve performance). We label the
data with version condition IDs by assigning numerical indices
to the different performances, where typically the same index
is given to an entire set of recordings (e.g., a CD box with
Beethoven’s Piano Trios recorded by the same ensemble in the
same studio). For church organ performances, where different
organ registers are used in different audio tracks, resulting in
significant timbre differences, we assign an individual version
ID for each track. We denote this dataset Dtrain.

b) Listening Tests Evaluation Set: For the listening tests,
we use 12 MIDI performances of Western classical pieces,
none of which appear in the train set, but containing the same
instruments as in Dtrain. The pieces include orchestral music,
wind quintet, church organ, and harpsichord pieces. We use
the first 3:00 minutes of each MIDI performance, which yields
a total duration of 36:00 minutes. Short excerpts used for the
listening tests were drawn randomly from these performances.
As references for comparison, for each MIDI performance we
use a corresponding real musical performance of the same
score, of the same instrumentation, but of a version that does
not appear in Dtrain. We denote this dataset Dlisten.

c) Large Quantitative Evaluation Set: We quantitatively
evaluate our models with 58 MIDI performances of Western
classical pieces of a total duration of 5:09:30 hours, none
of which appear in the train set, but containing the same
instruments as in Dtrain. For each test MIDI, we randomly
sample three version conditions for synthesis. For example, the
test MIDI can be a performance of Mozart’s 40th symphony,
and the version condition can be the performance of the Berlin
Philharmonic Orchestra playing Brahms’ Haydn Variations.
This is the same evaluation set used by Maman et al. [21].
We denote this dataset Dquant.

See our project page for the complete ensemble distribution
of the datasets Dtrain, Dlisten, Dquant, and for the list of pieces
used for the listening tests.

C. Evaluation Based on Listening Tests

We performed two distinct listening tests, to evaluate both
realism (Section VI-C1) and similarity to the target version
(Section VI-C2). Both listening tests are publicly available on
our project’s listening test page2.

1) Realism Listening Test: In this listening test, we aim to
evaluate to what degree our generated performances resemble
real musical performances, as opposed to synthesized ones.
Ideally, generated performances should be indistinguishable
from authentic recordings. For this, we follow an adaptation
of the MUSHRA (Multiple Hidden Stimuli with Hidden
Reference and Anchor) protocol [38] to evaluate realism of
generated performances.

2https://benadar293.github.io/listening-tests
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Fig. 5. MUSHRA realism listening test results in box plot form. For the
exact Mean Opinion Scores (MOS) appearing in this figure, see Table II.
’GM’ and ’Fluid’ are soundfonts used for concatenative synthesis. ’Hawth.’
is the model of Hawthorne et al. [17]. ’Uncond.’ is our model without
version conditiong (but with score conditioning). ’Cond.’ is our model with
both version conditioning and score conditioning. ’Vocoded’ is the reference
sample, after applying the vocoder to its mel-spectrogram, and is an upper
bound on the achievable realism. It can be seen that both our models (’Cond.’
and ’Uncond.’) produce significantly more realistic performances than all
compared models and methods.

TABLE II
REALISM MUSHRA LISTENING TEST MEAN OPINION SCORES (MOS).
THESE ARE THE RESULTS APPEARING IN FIGURE 5 IN BOX PLOT FORM.

WE LIST THE ABBREVIATIONS APPEARING IN FIGURE 5.

Model / Method Abbreviation Realism MOS ↑
Windows GM Soundfont GM 24.0
Fluid R3 GM Soundfont Fluid 44.5

Hawthorne et al. [17] Hawth. 30.7
Ours w/o version condition Uncond. 48.4
Ours w/ version condition Cond. 52.1

Vocoded Vocoded 86.2
Reference Real 99.0

MUSHRA is a protocol for assessing audio quality, origi-
nally created for evaluating audio compression. Typically, the
same excerpt is provided multiple times, restored with different
codecs or algorithms. Each comparison of excerpts contains
both a reference sample and one or more anchor samples.
The reference represents the ideal quality, i.e., no compression
is applied. The anchors represent baselines, against which
different methods can be compared, and are used to calibrate
the rating scale. The listener is provided with the reference
sample and the set of samples for evaluation, also including a
hidden version of the reference sample. The listener is asked to
rate all samples on a scale from 0 to 100, and is required to rate
the hidden reference with a score 90-100 (depending on the
standard that is used). The MUSHRA protocol is considered
robust, enabling statistically meaningful results with relatively
few participants.

We apply the same methodology to evaluate the realism
of our generated performances. Specifically, we want to find
out if and to what extent the generated performance sounds
like a real musical performance, as opposed to one performed
on a synthesizer. The listeners are presented with an audio
excerpt from a real musical performance as a reference, which

Other Reference
0
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60

80

100

M
OS

Similarity MOS (0-100)

median
mean

Fig. 6. Similarity listening test results. We synthesize the same score
excerpt using our model, with three different version conditions, which are
of performances with the same instrumentation. One of the three serves as
a reference version. We ask the user to rate the similarity of each of the
synthesized excerpts to a random excerpt of different score content, sampled
from the reference version. Left (’Other’): Similarity to the reference version
of excerpts synthesized with version conditions other than the reference
version. Right (’Reference’): Similarity to the reference version of excerpts
synthesized with the reference version condition.

represents ideal realism, and multiple synthesized versions of
the same score content appearing in the excerpt, using different
models or methods. As lower anchors we use synthesized
versions obtained by concatenative synthesis, using two dif-
ferent soundfonts: The standard Windows Media Player GM
soundfont, and the Fluid Release 3 General-MIDI soundfont,
which is of higher quality. Concatenative synthesis serves as a
baseline for achievable realism. We also include the vocoded
version of the reference, in order to isolate the influence
on realism of the vocoder from the spectrogram synthesizer.
The vocoded version was obtained by calculating the mel-
spectrogram of the reference sample and restoring the audio
with the same vocoder we use for synthesis. Note that the
vocoder quality is an upper bound on the quality achievable
by our method. We compare excerpts of the same score content
generated by the following neural synthesizers:

1) The original T5 model of Hawthorne et al. [17], which
was trained mainly on data produced by a concatenative
synthesizer, without version conditioning.

2) Our T5 model trained on our dataset, without version
conditioning.

3) Our T5 model trained on our dataset, with version
conditioning.

Note that the latter three configurations are all based on the
same architecture. The differences are the type of data, real or
synthetic, and whether or not version conditioning is used.

In total, seven versions were compared in each question:
Two from concatenative synthesizers, three from neural syn-
thesizers, the vocoded version, and the hidden reference. The
seven versions were presented in random order. We asked the
listeners to rate the realism of each excerpt from 0 (unrealistic)
to 100 (realistic) and informed the listener that there is a
hidden reference that must be ranked close to 100. The listener
had to rate the reference with a score above 90 more than 85%
of the time, otherwise the questionnaire was discarded.

The test comprised 32 participants, five of whom were
discarded, leaving 27 participants. The questionnaire included
ten questions. In each question, a twelve-second random
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excerpt was drawn from a MIDI sampled from Dlisten, and
sonified in the seven aforementioned variations (concatenative
synthesizers, diffusion model, vocoder, etc.). The reference
excerpt was obtained from a real performance of the same
piece as the MIDI, through automatic alignment, which was
manually verified to ensure it contained the same content. The
test was conducted using the webMUSHRA implementation
by Schoeffler et al. [42].

Results can be seen in Figure 5 and Table II. It is evident
that our model trained on real performances produces more
realistic results than all the baselines—both concatenative
synthesizers (GM, Fluid), and the model of Hawthorne et al.
[17], by a significant margin. This holds whether or not using
version conditioning. For example, the basic concatenative
synthesizer (GM) obtains 24.0 MOS in realism, where our
model with version conditioning obtains 52.1 MOS. Our
model also surpasses the more advanced concatenative syn-
thesizer (Fluid), improving MOS from 44.5 to 52.1. Noteably,
although we use the same architecture as Hawthorne et al. [17],
the difference in realism is significant—over 20 MOS differ-
ence, from 30.7 to 52.1, due to the difference in training data.
Also note that generating with or without version conditioning
yields comparable realism scores, where version conditioning
slightly improves MOS from 48.4 to 52.1. We note in this
context that version conditioning mainly influences version
similarity, discussed in Section VI-C2. Lastly, note that the
vocoder quality has a non-negligible effect on the final result,
as merely restoring the audio from the mel-spectrogram with
the vocoder reduces the score from 99.0 to 86.2.

We conclude from these results that using real musical
performances in a diffusion-based approach for music syn-
thesis significantly improves realism compared to data based
on traditional (concatenative) synthesis.

2) Version Similarity Listening Test: In this listening test,
we are interested in evaluating if and to what extent our
generated performances perceptually resemble the reference
version used for conditioning, in terms of acoustics, timbre,
performance, style, etc. For example, if generating an organ
piece with a version condition of a specific organ, we want to
evaluate to what extent the organ in the generated performance
sounds like the organ given in the reference version.

In this listening test, for each comparison we randomly
sample a reference audio excerpt aref with version vref and
score sref from Dtrain. We sonify a short score excerpt s (in
MIDI form, of different content than the reference sref ) three
times, once with the same version condition vref corresponding
to the reference, and with two additional randomly sampled
version conditions v1, v2, of the same instrumentation as vref .
We denote the outputs of the model by asref , a

s
1, a

s
2. For

example, following Figure 4, our reference (aref , vref , sref )
is Toscanini’s performance of Beethoven’s 5th Symphony.
As a score condition s we use an excerpt from Brahms’
4th Symphony, which we sonify with the reference version
condition vref being Toscanini’s performance of Beethoven’s
5th Symphony, and additional version conditions v1, v2 be-
ing Karajan’s performance of Brahms’ 2nd Symphony, and
Barenboim’s performance of Mozart’s 41st Symphony. For
the corresponding synthesized excerpts asref , a

s
1, a

s
2, we ask

TABLE III
RESULTS OF THE ALL-FAD METRIC FOR LISTENING TEST

PERFORMANCES.

All-FAD↓
Method VGGish TRILL

Dlisten Evaluation Set
GM 10.07 0.47

Fluid 12.35 0.67
Hawth. [17] 7.7 0.33

Uncond. 4.03 0.18
Cond. 4.81 0.20

Vocoded 5.68 0.17
Real 2.85 0.15
Dquant Evaluation Set

Uncond. 3.05 0.12
Cond. 3.58 0.11

the user to rate the similarity of each to the reference excerpt
aref , on a scale from 0 to 100.

The similarity test comprised 26 participants and included
ten questions. For each question, we sampled a random
twelve-second excerpt from a MIDI sampled from Dlisten, and
sonified it with the three aforementioned version conditions,
comparing them to the reference excerpt.

Results appear in Figure 6. In the left part, it can be seen that
version similarity scores improve significantly by conditioning
on the reference version, compared to conditioning on other
versions, even though they are of the same instrumentation.
The improvement is over 20 in the MOS, from 51.7 to 72.0
on average.

These results show that the notion of version similar-
ity, reflected in perceptual and acoustic similarity, is indeed
meaningful, and such similarity can be achieved by using
version conditioning. The results clearly indicate that version
conditioning is an effective means to obtain version-specific
characteristics, e.g., specific timbre or acoustics that appear in
a target version.

D. Quantitative Evaluation using Fréchet Audio Distance

We complement the listening tests with a quantitative
evaluation using the Fréchet Audio Distance (FAD) [24]—a
perceptual score with origins in computer vision [43]. We use
this metric in different ways to quantitatively evaluate realism
and quality (Section VI-D1), and version similarity, i.e., the
resemblance of our generated performances to the conditioning
version (Section VI-D2).

FAD relies on large models based on deep neural networks,
such as TRILL [44], trained on large real-world datasets to
predict embedding vectors from snippets of input audio. The
assumption is that perceptually similar audio snippets yield
closely spaced embedding vectors. To compute FAD between
two audio datasets D1, D2 (e.g., a set D1 of synthesized
audio conditioned on a specific version, and a set D2 of
real recordings of the same version), the mean vectors µ1, µ2

and the covariance matrices Σ1, Σ2 are computed over all
embedding vectors generated from D1 and D2, respectively.
The FAD is then defined as:

FAD(D1,D2) = |µ1 − µ2|2 + tr
(
Σ1 +Σ2 − 2(Σ1Σ2)

1/2
)
.

(8)
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Hahn: Bach Violin Partitas
Uchida: Beethoven Piano Concertos
Trio Élégiaque: Beethoven Piano Trios
Perlman: Beethoven Violin Sonatas
Soni Ventorum: Cambini Wind Quintet
Rousset: Bach Goldberg Variations
Bonynge: Tchaikovsky Swan Lake

Fig. 7. T-SNE Visualization of the TRILL embedding space. Points represent
audio tracks, and colors represent complete recordings of specific version IDs,
comprising multiple such tracks.

Intuitively, if D1, D2 are perceptually similar, the distributions
of the model’s responses over the two datasets should be
similar, resulting in a small distance. Kilgour et al. [24]
show that FAD correlates with human perception and that
increasing distortions increase the FAD. The results we present
in the following sections further confirm this, as we show that
qualitative listening test results are consistent with FAD scores.

We use two models as backbones for FAD, also used
by Hawthorne et al. [17] for evaluation: TRILL [44] (5.9 em-
beddings/sec.), and VGGish [45] (1 embedding/sec.). We mea-
sure FAD in two ways, differing in the choice of the compared
datasets: All-FAD for realism and quality (Section VI-D1), and
Group-FAD for version similarity (Section VI-D2).

We report quantitative metrics for the generated perfor-
mances used in the listening tests, and show they are consistent
with the qualitative listening tests’ results. For statistical stabil-
ity, the metrics were measured on the entire Dlisten evaluation
set from which excerpts in the listening tests were sampled.
In addition, for further statistical stability, we measure quanti-
tative metrics on the large scale 5-hour evaluation set Dquant

described in Section VI-B, also used by Maman et al. [21], and
compare generation with and without version conditioning.

1) All-FAD—Realism & Quality: To assess realism, quality,
and fidelity, we use FAD comparing the entire synthesized
evaluation set to the entire train set. In the terms of Equation 8,
we define D1 = fθ(Dmidi

listen), where fθ(Dmidi
listen) denotes our

DDPM-based synthesizer fθ applied to the set of MIDIs in
Dlisten, and D2 = Daudio

train , where Daudio
train denotes the audio

recordings in the train set Dtrain. Note that Dmidi
listen can also

be replaced by Dquant. Also note that Dtrain, Dlisten contain
both audio and scores, while Dquant contains only scores.

This captures the general similarity of the synthesized
performances to real performances (or more specifically, to
the entire set of real performances used for training), rather
than resemblance to a specific version. We refer to this metric
as All-FAD. While this metric is important for measuring
realism and quality, note that the main quantitative metrics
for evaluating version conditioning are the Group-FAD and
classification accuracy metrics discussed later.

Results for the All-FAD metric appear in Table III (lower is

TABLE IV
RESULTS OF THE GROUP-FAD METRIC, FOR LISTENING TEST

PERFORMANCES.

Group-FAD↓
Model VGGish TRILL

Dlisten Evaluation Set
GM 15.15 0.90

Fluid 15.35 1.10
Hawth. [17] 13.55 0.77

Uncond. 7.61 0.50
Cond. 5.15 0.30

Vocoded 8.69 0.45
Real 6.03 0.44
Dquant Evaluation Set

Uncond. 7.46 0.55
Cond. 5.68 0.36

TABLE V
RESULTS OF VERSION CLASSIFICATION BASED ON GROUP-FAD, FOR

LISTENING TEST PERFORMANCES.

Classification Accuracy
Model Top-1 Top-3 Top-5

Dlisten Evaluation Set
GM 9.1% 9.1% 9.1%

Fluid 0.0% 0.0% 0.0%
Hawth. [17] 18.2% 18.2% 18.2%

Uncond. 18.2% 27.3% 45.5%
Cond. 81.8% 90.9% 100.0%

Vocoded 27.3% 36.4% 45.5%
Real 45.5% 45.5% 63.6%

Dquant Evaluation Set
Uncond. 16.8% 31.6% 41.9%
Cond. 66.5% 83.9% 88.4%

better). It can be seen that using real training data significantly
improves All-FAD w.r.t. all baselines, whether or not using
version conditioning (Cond., Uncond.). For example, the All-
FAD based on VGGish is over 10.0 for concatenative syn-
thesizers and 7.7 for the model of Hawthorne et al. [17]. It
improves to 4.03 (Uncond.) or 4.81 (Cond.) when using our
model. This is consistent with the realism listening test results
(Figure 5, Table II). Note that the reference data Daudio

listen (Real),
i.e., the audio from Dlisten, achieves the best All-FAD scores
(i.e., setting D1 = Daudio

listen and D2 = Daudio
train in Equation 8),

despite being from versions that do not appear in the train set.
This implies that the All-FAD metric indeed reflects realism
and quality, beyond mere similarity to the train set.

Results on the large evaluation set Dquant show that version
conditioning does not significantly affect All-FAD, implying
that general quality is maintained. We also observe that version
conditioning might slightly increase the All-FAD. This can
be interpreted as follows: Version conditioning shifts the
distribution of the generated performances from the general
distribution of the train set Dtrain, towards the distribution of
specific versions, as explained in Section VI-D2.

2) Group-FAD: To measure version similarity, i.e., how
well generated performances resemble the target conditioning
version, we introduce the Group-FAD metric. To motivate its
use, we show in Figure 7 a t-Distributed Stochastic Neighbor
Embedding (t-SNE) visualization [46] from the train set’s
TRILL embedding distribution. Each point represents the
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mean embedding of an audio track (e.g., a movement in a
symphony), and each color represents a recording, comprising
multiple such tracks, corresponding to a specific version. It
can be seen that tracks of the same version form clusters.

Following this insight, we define the Group-FAD metric:
To measure how well our version-conditioned synthesized
performances resemble the target version in acoustics, timbre,
etc., we compute FAD comparing each score s synthesized
with a version condition v, to the subset of the training set
recordings corresponding to v, which we denote Daudio

v . In
the terms of Equation 8, we define D1 = fθ(s, v), where fθ
denotes our DDPM-based synthesizer, and D2 = Daudio

v .
Group-FAD results appear in Table IV. It can be seen that

version conditioning dramatically and consistently improves
Group-FAD, both compared to the baselines, and compared
to our model without version conditioning. Note for example,
that Group-FAD based on VGGish improves from 7.61 when
using our model without version conditioning, to 5.15 when
using our model with version conditioning. Notably, when
using version conditioning, Group-FAD is better than that of
the real samples Daudio

listen playing the same score but of another
version (Real). For example, the TRILL-based Group-FAD
for the real samples is 0.44, and improves to 0.3 for our
version-conditioned samples (as explained in Section VI-C1,
the reference samples Daudio

listen are from real performances of
the test MIDIs, of versions that do not appear in the train
set). Results are consistent between VGGish and TRILL,
and are consistent with the version similarity listening test
(Section VI-C2), indicating perceptual similarity to the target
version obtained by version conditioning.

3) Version Classification: We further use the Group-FAD
metric to classify the version of generated performances ac-
cording to the Group-FAD nearest neighbor, over all training
versions. In an initial experiment on version classification
of real recordings, TRILL was more accurate than VGGish,
therefore we use TRILL for version classification of generated
performances.

Results are shown in Table V. Note, for example, that
version conditioning (Cond.) improves version classification
accuracy by 35-60%. The improvement is dramatic both
compared to performances generated w/o version conditioning
(Uncond.), and also compared to real performances (Real)—
from 18.2% and 45.5% respectively to 81.8%.

E. Score Control Evaluation using Transcription Metrics

In this experiment, we quantitatively evaluate whether our
DDPM-based model accurately renders the score as specified
by the input score (given as MIDI representation). To this
end, we use transcription metrics to determine if the generated
performances contain the correct notes at the correct times,
played by the correct instruments. We assess the transcription
accuracy of the synthesized performances using an automatic
transcriber [22, 25], trained on the same data as the synthe-
sizer. We compare the note events in the input score to those in
the transcription of the synthesized performance, and measure
the F1 score for the following:

• Note: Accuracy of pitch and onset within 50ms.

TABLE VI
TRANSCRIPTION RESULTS, FOR LISTENING TEST PERFORMANCES

(’NOTE+IN.’ IS THE NOTE-WITH-INSTRUMENT METRIC).

Transcription F1% ↑
Note Note+In. Frame

Dlisten Evaluation Set
GM 60.0 27.0 59.2

Fluid 56.2 39.5 59.2
Hawth. [17] 54.3 16.4 58.8

Uncond. 65.7 45.8 59.3
Cond. 65.0 48.4 61.5

Dquant Evaluation Set
Uncond. 66.9 50.7 64.8
Cond. 64.7 46.2 63.9

• Note-with-Instrument: Accuracy of pitch, onset within
50ms, and correct instrument.

• Frame: Accuracy of note duration.
Results appear in Table VI. It can be seen that all methods

produce transcription metrics that are on a rather compara-
ble scale, except for the note-with-instrument metric. Our
model (Cond., Uncond.) reaches a note-level accuracy of
∼65-67%, which is of reasonable magnitude when consid-
ering the complexity of highly polyphonic orchestral music.
Note that the transcription metrics are influenced not only
by the synthesizer’s quality but also by the transcriber. The
transcriber was trained on the same data as the synthesizer,
and therefore might not perform as well on data generated
by other synthesizers. Results on the large evaluation set
show comparable transcription accuracy whether or not using
version conditioning, similar to the All-FAD metric.

In the qualitative listening tests (Sections VI-C1, VI-C2),
we focus on realism and version similarity, and not on score
control. Although we provide quantitative results for score
control, further listening tests for this aspect are an important
direction for future work.

VII. CONCLUSIONS AND FUTURE WORK

We presented a framework for training neural diffusion-
based synthesizers on real uncurated musical performances
with diverse acoustics and instrumentation, including orches-
tral symphonies. Our proposed approach is based on diffu-
sion models with multi-aspect conditioning, on both score
and version. Through qualitative listening tests and quanti-
tative evaluations, we have demonstrated that our approach
produces performances with improved realism, and provides
novel acoustic control, enabling to generate performances
with version-specific characteristics, such as timbre and room
acoustics. We strongly believe our approach is a significant
step towards hyper-realistic and controlled music synthesis.
Aside from extension to other genres, such as jazz, ethnic,
and pop music, there are several important directions for future
work, a few of which we outline:

1) Instrumentation Generation: Initial results provided on
our project page demonstrate the ability to generate instru-
mentation from pitch-only input, implicitly controlling instru-
mentation through version-conditioning. Further investigation
of this matter is an important direction for future work.
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2) Unseen Versions: Our model can currently generate per-
formances of unseen scores, with versions from the train set.
Adapting a model to new unseen versions through inference
from an example excerpt, or test-time adaptation, would be
highly desirable.

3) Human Singing Voice & Lyrics Conditioning: While in
this work we focus on instrumental music, we believe a unified
diffusion-based framework for music and human speech is
possible. In particular, we believe our approach could be
applied to human singing voice synthesis, by applying similar
additional conditioning techniques on lyrics or phonemes, and
singer or speaker ID.

4) Elaborate Performance Control: In this work, we rely
on the model to generate performance aspects such as note
intensity and vibrato. Adding conditions for such performance
aspects will enhance control, but will require enhancement
of the transcriptions to comprise these aspects, which is an
ongoing field of research.

5) Other Spectral Representations: In this work, we focus
on mel-spectrogram synthesis and use a vocoder to convert the
spectrogram to audio. We believe our approach can be applied
to other spectral representations such as the magnitude-STFT
or even the complex STFT, with higher computational costs.
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“Fréchet audio distance: A reference-free metric for eval-
uating music enhancement algorithms,” in Proceedings
of the Annual Conference of the International Speech
Communication Association (Interspeech), Graz, Austria,
2019, pp. 2350–2354.

[25] C. Hawthorne, A. Stasyuk, A. Roberts, I. Simon, C. A.
Huang, S. Dieleman, E. Elsen, J. H. Engel, and D. Eck,
“Enabling factorized piano music modeling and genera-
tion with the MAESTRO dataset,” in Proceedings of the
International Conference on Learning Representations
(ICLR), New Orleans, Louisiana, USA, 2019.

[26] B. Wang and Y. Yang, “Performancenet: Score-to-audio
music generation with multi-band convolutional residual
network,” in Proceedings of the Conference on Artificial
Intelligence (AAAI), Honolulu, Hawaii, 2019, pp. 1174–
1181.

[27] J. W. Kim, R. M. Bittner, A. Kumar, and J. P. Bello,
“Neural music synthesis for flexible timbre control,”
in Proceedings of the IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP),
Brighton, UK, 2019, pp. 176–180.

[28] H. Dong, C. Zhou, T. Berg-Kirkpatrick, and J. J.
McAuley, “Deep performer: Score-to-audio music per-
formance synthesis,” in Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech, and Signal
Processing (ICASSP), Singapore, 2022, pp. 951–955.

[29] Y. Wu, E. Manilow, Y. Deng, R. Swavely, K. Kastner,
T. Cooijmans, A. Courville, C.-Z. A. Huang, and J. En-
gel, “MIDI-DDSP: Detailed control of musical perfor-
mance via hierarchical modeling,” in Proceedings of the
International Conference on Learning Representations
(ICLR), 2022.

[30] H. Kim, S. Choi, and J. Nam, “Expressive acoustic guitar
sound synthesis with an instrument-specific input rep-
resentation and diffusion outpainting,” in ICASSP 2024
- 2024 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2024, pp. 7620–
7624.

[31] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. W. Senior,
and K. Kavukcuoglu, “WaveNet: A generative model for
raw audio,” in Proceedings of the ISCA Speech Synthesis
Workshop, Sunnyvale, USA, 2016.

[32] J. H. Engel, C. Resnick, A. Roberts, S. Dieleman,
M. Norouzi, D. Eck, and K. Simonyan, “Neural audio
synthesis of musical notes with wavenet autoencoders,”
in Proceedings of the International Conference on Ma-

chine Learning (ICML), vol. 70, Sydney, Australia, 2017,
pp. 1068–1077.

[33] A. Agostinelli, T. I. Denk, Z. Borsos, J. H. Engel,
M. Verzetti, A. Caillon, Q. Huang, A. Jansen, A. Roberts,
M. Tagliasacchi, M. Sharifi, N. Zeghidour, and C. H.
Frank, “Musiclm: Generating music from text,” CoRR,
vol. abs/2301.11325, 2023.

[34] F. Schneider, Z. Jin, and B. Schölkopf, “Moûsai: Text-
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